
QPalma Documentation

Fabio De Bona & Gunnar Rätsch

November 2010

1 Overview

QPALMA [1] is a component of PALMapper [2], an alignment tool targeted to accu-
rately and efficiently align both unspliced and spliced reads produced by Next Gen-
eration sequencing platforms such as Illumina Genome Analyzer or 454. PALMap-
per is designed to deal with the relatively short length and the possible low quality
of reads by combining both the training algorithm and the alignment component of
QPALMA with the efficient read mapping algorithm of GenomeMapper [3].
QPALMA relies on a machine learning strategy similar to Support Vector Ma-
chine (SVM) and provides a scoring function to optimally combine several pieces of
information, in particular, the (a) alignment information, (b) computational splice-
site predictions, (c) read quality values and (d) (optionally) intron lengths. This
QPALMA scoring model is then used by PALMapper to guide a semi-global align-
ment algorithm that allows for long gaps that correspond to introns. For further
details on QPALMA itself consult the paper [1]. For details about the learning
method see [4].
This documentation describes how to install the training component of QPALMA
and how to train it based on (a) the reference genome, (b) a set of RNA-seq reads,
and (c) a small set of annotated (spliced) transcripts.
The official QPALMA project email address is:

qpalma@tuebingen.mpg.de

Alternatively, you may contact Gunnar Rätsch (Gunnar.Raetsch@tuebingen.mpg.de).

2 Installation

2.1 Dependencies

QPALMA is designed to run on Linux/UNIX or Mac OS X platforms and can be
downloaded at this address:
http://ftp.tuebingen.mpg.de/pub/fml/raetsch-lab/software.
This package is distributed under the GNU Public License (GPL). Read the license
before installation. The programs are distributed as C++ and Python source for
QPALMA. The memory requirement of QPALMA very much depends on how many
examples are used for training. In most cases 4GB of RAM are sufficient.
The software package has the following dependencies on other packages:

• SWIG, the simple wrapper interface generator (http://www.swig.org)

• Python ≥ 2.5 (http://www.python.org)

• C compiler, for instance the GNU C Compiler gcc (http://www.gnu.org).
For other compilers, the compiler flags may need to be adapted in Makefile

files.

1



• numpy, a python package for numeric computations (http://numpy.scipy.
org)

• PALMapper, the short read aligner used here for preliminary alignments to
estimate an error model (see below). This software can be downloaded at this
address: http://ftp.tuebingen.mpg.de/pub/fml/raetsch-lab/software/.

• one of the following optimization toolkits:
CVXOPT (http://abel.ee.ucla.edu/cvxopt, free), or
MOSEK (http://www.mosek.com, commercial, free academic licenses avail-
able).
These both optimizers provide the same performance. However, MOSEK is
easier to install and run faster than CVXOPT but CVXOPT is entirely free.

• Standard programs, such as wget, make, etc.

2.2 Step by step installation guide

1. Go to http://ftp.tuebingen.mpg.de/pub/fml/raetsch-lab/software/ and
download the package qpalma/qpalma-0.9.3.tar.gz to the home directory.

2. Extract the tar-gzipped file in your home directory as follows:

user:~$ cd

user:~$ tar zxvf qpalma-0.9.3.tar.gz

This command decompresses and unpacks the different files contained in the
archive to a directory named qpalma-0.9.3.

3. From home directory, run the setup qpalma.sh script by typing:

user:~$ cd qpalma-0.9.3

user:~/qpalma-0.9.3$ ./setup_qpalma.sh

4. Follow the interactive instructions given. First, set QPALMA base directory
by copying the suggested path.

5. Type 1 or 2 to select the optimizer to use. According to the selected optimizer:

a. For MOSEK, select between 2 and 4 for downloading complementary
binaries according to the architecture of the system or type 1 to use ex-
isting installation.
In short, to know which Linux architecture to choose, type uname -m in
an other shell window. If the result of the command is x86 64, it is
a Linux 64-bit system, otherwise it is a 32-bit (i386) system. During
the setup process, the optimization package MOSEK with a trial license
will be downloaded and installed in the directory ./modules/mosek. The
downloaded trial license is restricted to 300 variables, which is not suf-
ficient for most cases. The user can obtain a trial license without this
restriction (but time limited) from
https: // www. mosek. com/ cgi-bin/ trial. py . The obtained license
file has to be copied to ./modules/mosek/5/licenses/mosek.lic to get
it to work.

b. for CVXOPT, press Enter to confirm the current installation bin/ di-
rectory.
The user needs to install CVXOPT manually in the corresponding in-
stallation bin/ directory. It can be downloaded from
http: // abel. ee. ucla. edu/ cvxopt/ download/ index. html .

2



6. The setup script builds the necessary C++ extension modules and the Python
code, and creates a configuration file ./bin/qpalma config.sh.

3 Training QPALMA

This section describes how to train the QPALMA component of PALMapper based
on the reference genome, a set of RNA-seq reads and a small set of annotated
(spliced) transcripts. During this process an error model is estimated from a pre-
liminary alignment of the reads to the reference genome and a set of artificial reads
is created from the annotated transcripts and the error model. Both steps are nec-
essary to generate a set of realistic artificial reads with known alignment in order to
train QPALMA. The training and later the alignment benefit from computational
splice sites predictions for the reference genome. The result of the training step
is a QPALMA parameter file adapted to the specifics of the reads of an RNA-seq
experiment, which is required for the alignment protocol.
The QPALMA and PALMapper releases also contain pre-trained QPALMA param-
eter files, which can be used alternatively. It should be noted, however, that the
QPALMA parameters optimally trade-off the amount errors in the reads and the in-
formation from splice site predictions for one combination of RNA-seq experiment,
splice site predictions and genome. Using sharing parameter sets among experiments
or genome can lead to a suboptimal alignment performance with PALMapper.

3.1 Input files

Training QPALMA needs the following files:

• Genome sequence in FASTA format.

• Read data to align in Sanger FASTQ format (see section 5.1 for Sanger FASTQ
format).

• A partial genome annotation in GFF3 format. The genome annotation in
GFF3 format does not need to be perfect nor complete. However, ideally, it
contains a few hundred spliced transcripts or partial transcripts, which are
representative of the rest of the genome. The quality of annotation near
intron boundaries is most influencing the subsequent steps: a bad annotation
can lead to a suboptimal QPALMA model and hence affect the quality of the
final alignments.

• Donor and acceptor splice site predictions in binary signal prediction format
(BSPF) and their associated files (see section 5.2 for BSPF format). There
are two ways for obtaining these files: splice site predictions can be computed
for a given genome via an appropriate tool (see mGene [5, 6] or ASP [7] for
example) or the user can directly download precomputed splice site predic-
tions for a growing list of organisms at http://ftp.tuebingen.mpg.de/pub/
fml/raetsch-lab/predictions/splice. In the last case, the splice site pre-
dictions have to be used together with the corresponding version of genome
sequence. Alternatively, splice site predictions can be predicted using the
Galaxy system (http://galaxy.tuebingen.mpg.de/) and then downloaded
for local use. The user may also disable the use of splice site predictions to
train QPALMA by using -no-ss-pred parameter in the way explained in step
2 below.

3



3.2 Training QPALMA on the command-line

1. Open a shell window and go to QPALMA directory:

user:~$ cd qpalma-0.9.3

2. Use the command below to train QPALMA within the working directory:

user:~/qpalma-0.9.3$ ./tools/train_qpalma_artificial_reads.sh \

<genome_file> <read_file> <anno_file> <gff3_source> <acc_pred_file> \

<don_pred_file>

where:

• <genome file> is the path to genome sequence file.

• <read file> is the path to genome read data file.

• <anno file> is the path to genome annotation file.

• <gff3 source> is the second column of the annotation file corresponding
to transcripts.

• <acc pred file>, <don pred file> are the paths to acceptor and donor
splice site prediction files. If splice site predictions are not available or
if the user wishes to train QPALMA without splice site predictions, the
files <acc pred file> and <don pred file> have to be replaced by the
parameter -no-ss-pred.

The result will be a QPALMA parameter file that can be used for alignments
with PALMapper. The run-time is about two hours on a standard desktop
computer (depending on a few properties of the transcript annotations).

The above program calls several scripts that experienced users may want run
manually:

• Computation of a random subset of reads from the original data:

user:~/qpalma-0.9.3$ python ./tools/sequences/subsample_fastq.py \

<read_file> <no_reads> <sample_file>

Since the read data file <read file> is quite huge, it is sufficient to
take a subset of <no reads> reads as sample source. The output file
<sample file> is in Sanger FASTQ format. Since the errors are not
uniformly distributed in most read files returned by sequencers, it is not
sufficient to simply use the first part of the file.

• Estimation of an error model:

user:~/qpalma-0.9.3$ ./tools/errormodel/create_error_model.sh \

<sample_file> <genome_file> <no_reads> <pickle_file> \

<quality_sample>

This tool creates an error model from a given read file <sample file>,
a number of reads <no reads> and a reference genome <genome file>.
The user should use a read file that has either a sufficient size (> 100000
reads) or is a representative subset of a bigger read file that can be
created with the sub-sampling script. The user can precise the same
number of reads as before to take the whole sub-sample into account.
The output files are the error model <pickle file> in PICKLE format
and a <quality sample> in plain TXT format.

4



• (Optional) Analysis of the error model:

user:~/qpalma-0.9.3$ python ./tools/errormodel/evaluateErrormodel.py \

-e <pickle_file> -q <quality_sample> -H <plot_file>

Optionally, it can be interesting to visualize different properties of the er-
ror model of the data for evaluation and analysis of the alignment. From
an error model <pickle file> and an associated <quality sample>, an
evaluation plot <plot file> in PNG format is created.

• Creation of artificial reads:

user:~/qpalma-0.9.3$ ./tools/gff/create_art_reads.sh \

<out_dir> <pickle_file> <genome_file> <anno_file> <gff3_source> \

<read_length> <no_transcripts> <no_reads> [<paired>]

Based on error model, genome sequence and annotated transcripts in
the GFF3 file, the tool will create <no reads> artificial reads of length
<read length> that are sampled from <no transcripts> different tran-
scripts. The resulting reads in Sanger-FASTQ format, their optimal
alignments in SAM format and the QPALMA training set encoded in
BED format (described in section 5.3) are written out in <out dir>.

• QPALMA training: the training is done by calling the program:

user:~/qpalma-0.9.3/bin$ qpalma_train <config_file> <qpalma_train.bed>\

<working_dir>

In addition to the training file encoded in BED format (obtained in the
previous step) and the output directory, it requires a configuration file
with all necessary information. This configuration file is described in
section 5.4.

For simplicity, one may use a script to automatically generate the con-
figuration file from environment variables that can be set as follows:

export QPALMA_max_intron_length=50000 # maximal intron length

export QPALMA_half_window_size=50000 # window size (=intron len)

export QPALMA_enable_intron_length=False # no intron len scoring

export QPALMA_prb_offset=33 # quality value offset

export QPALMA_max_qual=40 # maximal quality value

export QPALMA_iterations=50 # iteration limit

export QPALMA_C=10 # regularization parameter

export QPALMA_num_supp_points=10 # number of pieces in PLIFs

export QPALMA_genome_dir=<genome_file> # genome FASTA file

export QPALMA_acceptor_scores=<acc pred file> # acceptor splice pred.

export QPALMA_donor_scores=<don pred file> # donor splice pred.

export QPALMA_drop_unspliced=True # no unspliced reads

To train QPALMA without splice site predictions, the user has to replace
the two lines concerning splice site prediction files by the following one:

export QPALMA_enable_splice_scores=False # no splice site pred.

The script that automatically generates the configuration file and launches
the training can be started with:

user:~/qpalma-0.9.3$ ./galaxy/qpalma_train.sh <qpalma_train.bed> \

<working_dir> <parameters.qpalma>

5



where <qpalma train.bed> is the QPALMA training set based on arti-
ficial reads, <working dir> is a directory to store intermediate results,
and <parameters.qpalma> is the resulting QPALMA parameter file. De-
pending on the parameter settings, training may take between a few
minutes to a few hours.

For a deeper comprehension of these scripts, their settings and defaults pa-
rameter values, we advise the user to edit manually and to read carefully the
file ./tools/train qpalma artificial reads.sh.

3. A QPALMA parameter file called parameters.qpalma has been generated in
the working directory. It describes the piece-wise linear functions (PLiFs) for
scoring intron lengths, splice sites and possible edit operations. See Figure 1
for more information.

Figure 1: Example of a QPALMA parameter file generated during the training
phase of QPALMA. The first lines starting with ## characters describe the pa-
rameters used for generating this file. The following lines represent the piece-wise
linear functions for intron length (h), donor splice sites (d), acceptor splice sites (a)
and edit operations for match/mismatch/gap on read (q). Each piece-wise linear
function is defined by the range of possible x-values (length for h, splice site pre-
dictions for d and a, quality for q) which is followed by the values for all support
points (first, x-values separated by commas then, after a space, y-values separated
by commas too). mmatrix defines fixed scores for a gap on DNA according to pos-
sible aligned base in read. Finally, prb offset is the quality offset for determining
the quality value from the ASCII quality character.

3.3 Training QPALMA on an example

QPALMA package includes examples to easily try the training procedure. The
small example takes few minutes to complete, the larger example about two hours.

1. Go to examples directory:

user:~/qpalma-0.9.3$ cd examples

6



2. Choose the tiny example by typing:

user:~/qpalma-0.9.3/examples$ cd tiny_test

3. Execute the script run qpalma training.sh by running the following com-
mand:

user:~/qpalma-0.9.3/examples/tiny_test$ ./run_qpalma_training.sh

It calls the script train qpalma artificial reads.sh detailed above on
the data stored in data directory. If everything ran well, the correspond-
ing QPALMA parameter file parameters.qpalma is generated in the working
directory.

4 Training QPALMA using Galaxy tools

QPALMA can also be trained via a Web service (http://galaxy.fml.mpg.de/),
which is a customized version of the Galaxy frameworks [8, 9, 10]. There are no
difference between these two ways of training QPALMA except that using galaxy
saves the user from installing the software. Moreover, it is preferable to train
QPALMA via galaxy if the rest of the study is carried out with galaxy as well.
For further details about how to train QPALMA using Galaxy tools, please read
PALMapper tutorial [2].

5 File Formats / Specifications

This section introduces all formats and conventions to be used when training QPALMA.

5.1 The read file

The read file is encoded in Sanger FASTQ format. A FASTQ file normally uses
four lines per sequence. The first line begins with a ’@’ character and is followed
by the read identifier and an optional description. The second line is the nucleotide
sequence of the read. The third line begins with a ’+’ character and is optionally
followed by the same identifier (and any description) again than in line 1. The last
line encodes the quality values for the sequence in line 2, and must contain the same
number of symbols as letters in the sequence. Sanger format encodes a quality score
from 0 to 93 using ASCII 33 to 126. For a more detailed description of the FASTQ
format consult: http://en.wikipedia.org/wiki/FASTQ_format. Figure 2 is an
example of a Sanger FASTQ file.

5.2 Splice Scores

As mentioned before, the splice site scores can be generated using an appropriate
tool such that mGene [5, 6] or ASP [7]. If you would like to use your own splice site
predictions you can create files according to the Binary Signal Prediction Format
(BSPF) described below:
For each canonical acceptor (AG) and donor site (GT/GC) QPALMA expects a
score. The data is organized in files for each signal (acc/don) for each strand (+/-).
The information on positions of canonical splice sites and the corresponding scores
lies in separate files. Every chromosome or contig leads then to 8 files (acc/don,
+/- and pos/score). The position and score files are raw binary files containing
the ordered positions and the scores. The positions are stored as unsigned values

7



Figure 2: Example of a Sanger FASTQ file for input read data.

and the scores as floats. Note that you have to be careful when working in an
inhomogeneous cluster environment (endianness, data type size). The positions are
1-based and the assignment of positions and their scores is as follows: The acceptor
score positions are the positions right after the AG and the donor score positions
are the positions right on the G of the GT or GC. For example:

... 3 4 5 6 7 8 9 10 11 ...

... w g t x y z a g v ...

... 0.2 0.3 ...

We supply a script asciispf to spf.py (tools/splicesites/ directory) for con-
version of ASCII to binary files. You can use this script as a template to make your
own scoring information files.

5.3 Training file format and internal representation

The read input files for QPALMA contain the read sequences with their quality as
well as some information from the first mapping (see “creation of artificial reads”
item in section 3.2). We use the BED format (cf. http://genome.ucsc.edu/FAQ/

FAQformat#format1) as format for the input file needed for QPALMA training.
The bed format can be described as follows: each line corresponds to one read and
consists of 12 tab-separated entries, namely:

1. chrom - The name of the chromosome (e.g. chr3)

2. chromStart - The starting position of the feature in the chromosome or
scaffold. The first base in a chromosome is numbered 0.

3. chromEnd - The ending position of the feature in the chromosome or scaf-
fold. The chromEnd base is not included in the display of the feature. For
example, the first 100 bases of a chromosome are defined as chromStart=0,
chromEnd=100, and span the bases numbered 0-99.

8



4. name - Defines the name of the BED line.

5. score - A score between 0 and 1000 (not used in QPALMA)

6. strand - Defines the strand - either ’+’ or ’-’.

7. thickStart - (not used in QPALMA)

8. thickEnd - (not used in QPALMA)

9. itemRgb - An RGB value of the form R,G,B (e.g. 255,0,0) (not used in
QPALMA)

10. blockCount - The number of blocks (exons) in the BED line.

11. blockSizes - A comma-separated list of the block sizes. The number of items
in this list should correspond to blockCount.

12. blockStarts - A comma-separated list of block starts. All of the blockStart
positions should be calculated relative to chromStart. The number of items
in this list should correspond to blockCount.

Strand specific direction means that QPALMA assumes that the reads are already
in their true orientation and the qualities as well.
Alignment information means that an alignment of a read to a genomic sequence. A
mismatch is encoded as [AG] if A is on the sequence and G on the read side. A gap
on the sequence (on read side, respectively) is denoted by [−X] ([X−], respectively)
with X ∈ A,C,G, T,N .

5.4 The configuration file

In order to run QPALMA successfully you will need to create a configuration file,
which includes all settings QPALMA needs to perform an analysis such as paths to
files where the raw data exists as well as sequencing platform used, the number of
cluster nodes to employ etc. Its values are in the form:

key = value

The use of the character # at the beginning of a line introduces a comment.
All valid parameters for QPALMA are summarized below. You can also look at the
galaxy/galaxy.conf file which is a template file used during the execution of the
script qpalma train.sh (see QPALMA training item in section 3.2) to automati-
cally generate the configuration file from environment variables.
The configuration parameters do not have to be in a particular order. In order to
simplify explanations, we have grouped them according to their particular seman-
tics.

5.4.1 General settings for QPALMA

• perform checks - Enables some checks and debugging output.

• platform - IGA or 454 for Illumina Genome Analyzer or Roche’s 454, respec-
tively.

9



5.4.2 Data accession

The second group includes parameters needed for accessing the sequence data and
the splice site predictions:

• genome dir - The location of the genomic sequence files.

• acceptor scores loc - The location of the acceptor scores files. It must not
appear if the user wishes to train QPALMA without splice site predictions or
if splice site predictions are not available.

• donor scores loc - The location of the donor scores files. It must not appear
if the user wishes to train QPALMA without splice site predictions or if splice
site predictions are not available.

• genome file fmt - A format string describing how valid file names for the
DNA sequences in flat file format (letters without white spaces) are generated.
See description below.

• splice score file fmt - A format string describing how valid file names for
the splice site scores are generated.

• allowed fragments - A list of the form “[1,2,4]” describing the valid file
name numbers. See description below.

• half window size - Given an alignment seed position for a given read we cut
out the area [seed pos-half window size,seed pos+half window size]. It should
be equal to the parameter max intron len (see below).

• output format - The output format can be blat, shore or mGene.

• prb offset - This value will be substracted from the ASCII quality code (for
example an ’h’ would correspond to quality 40) to obtain the quality value
(choose 33 for Sanger FASTQ files).

Format Strings The genomic sequence and the splice site scores file are accessed
using the format strings given above. This works as follows: Suppose we have two
chromosomes 1 and 4 we want to align to. The sequences are in flat files:

/home/user/genomic sequence/chromosome 1.flat

/home/user/genomic sequence/chromosome 4.flat

Then we set genome dir to /home/user/genomic sequence, genome file fmt to
chromosome %d.flat and allowed fragments to [1,4].

5.4.3 Additional Configuration Parameters

Parameters needed for training are:

• C - this is a parameter trading off between loss term and regularization (sim-
ilar to C in SVM training; set to 1, if unsure).

• enable quality scores - You can enable or disable the use of quality scores
by setting this parameter to True or False. (This version has only been tested
for True.)

• enable splice scores - You can enable or disable the use of splice site scores
by setting this parameter to True or False. If this parameter is set to False, the
parameters donor scores loc and acceptor scores loc should not appear.

10



• enable intron length - You can enable or disable the use of intron length
scoring by setting this parameter to True or False.

• drop unspliced - You can enable or disable the use of unspliced reads by
setting this parameter to False or True.

• max unspliced reads - Maximal number of unspliced reads (if drop unspliced
is set to False).

• optimizer - Either one of CVXOPT or MOSEK.

• numConstraintsPerRound - How many constraints per optimizer call should
be generated (if unsure set to 50).

5.4.4 PLiFs parameters

For training and prediction purposes you can set the number of support points for
the piecewise linear functions of the scoring matrix. This effectively changes the
total number of parameters of the model. That means that you can only predict
with a parameter vector which was trained with the same settings. (We refer to
piecewise linear functions as plifs.)

• numAccSuppPoints - The number of support points for the plif scoring the
acceptor scores.

• numDonSuppPoints - The number of support points for the plif scoring the
acceptor scores.

• numLengthSuppPoints - The number of support points for the plif scoring
the acceptor scores.

• min intron len and max intron len - Set this to the range of minimum
and maximum intron lengths.

• min qual and max qual - Set this to the range of possible quality values.
(Illumina GA usually [-5,40]).

• min svm score and max svm score - As we work with normalized (in the
range [0.0,1.0]) splice site scores this is usually 0.0 resp. 1.0.

5.4.5 “Low-level” parameters

The following last group of parameters includes “low-level” parameters. Just keep
the default values of these parameters. Possible extensions of QPALMA may use
them differently.

• remove duplicate scores

• print matrix

• matchmatrixCols and matchmatrixRows

• numQualPlifs

• numQualSuppPoints

• totalQualSuppPoints

• iter steps

11



6 Internet Resources

http://www.fml.mpg.de/raetsch/suppl/qpalma

QPALMA project web-page.
http://www.fml.mpg.de/raetsch/suppl/palmapper

PALMapper project web-page.
http://www.fml.mpg.de/raetsch/suppl/mgene

mGene project web-page.
http://www.fml.mpg.de/raetsch/suppl/splice

ASP project web-page.
http://ftp.tuebingen.mpg.de/pub/fml/raetsch-lab/software/

http server for downloading QPALMA.
http://galaxy.fml.mpg.de/

Galaxy server.

References

[1] F. De Bona, S. Ossowski, K. Schneeberger, and G. Rätsch. Optimal Spliced
Alignment of Short Sequence Reads. Bioinformatics, 24(16):i174-i180, 2008.

[2] G. Jean, A. Kahles, V.T. Sreedharan, F. De Bona, and G. Rätsch. RNA-Seq
Read Alignments with PALMapper. Curr. Protoc. Bioinformatics, 32:11.6.1-
11.6.38, 2010.

[3] K. Schneeberger, J. Hagmann, S. Ossowski, N. Warthmann, S. Gesing,
O. Kohlbacher, and D. Weigel. Simultaneous alignment of short reads against
multiple genomes. Genome Biology, 10(9):R98, 2009.

[4] I. Tsochantaridis, T. Hofmann, T. Joachims and Y. Altun. Support Vector Ma-
chine Learning for Interdependent and Structured Output Spaces. Proceedings
of the 16th International Conference on Machine Learning, 2004.

[5] G. Schweikert, G. Zeller, A. Zien, J. Behr, C.-S. Ong, P. Philips, A. Bohlen,
S. Sonnenburg, and G. Rätsch. mGene: A Novel Discriminative Gene Finding
System. Genome Research, 19:2133-2143, 2009.

[6] G. Schweikert, J. Behr, A. Zien, G. Zeller, S. Sonnenburg, and G. Rätsch.
mGene.web: a web service for accurate computational gene finding. Nucleic
Acids Research, 37(Suppl. 2):W312W316, 2009.

[7] S. Sonnenburg, G. Schweikert, P. Philips, J. Behr, and G. Rätsch. Accu-
rate splice site prediction using support vector machines. BMC Bioinformatics,
8(Suppl 10):S7, 2007.

[8] D. Blankenberg, J. Taylor, I. Schenck, J. He, Y. Zhang, M. Ghent, N. Veer-
araghavan, I. Albert, W. Miller, K. Makova, R. Hardison, and A. Nekrutenko.
A framework for collaborative analysis of ENCODE data: making largescale
analyses biologist-friendly. Genome Research, 17(6):960964, 2007.

[9] J. Taylor, I. Schenck, D. Blankenberg, and A. Nekrutenko. Using galaxy to
perform large-scale interactive data analyses. Curr. Protoc. Bioinformatics,
19:10.5.1-10.5.25, 2007.

[10] D. Blankenberg, G. Von Kuster, N. Coraor, G. Ananda, R. Lazarus, M. Man-
gan, A. Nekrutenko, J. Taylor. Galaxy: A WebBased Genome Analysis Tool for
Experimentalists. Curr. Protoc. Molecular Biology, 89:19.10.1-19.10.21, 2010.

12


